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ABSTRACT

The Ekman spiral boundary layer is a simple example of secondary flows
where the velocity vector changes direction with distance from the boundary.
The ideal Ekman spiral occurs in rotating systems near boundary surfaces
perpendicular to the rotation axis when theAflow is slow compared to the‘speed
of :otation; Previous experimental and theoretical results on the shear-
flow instability for a rigid boundary are briefly reviewed. New results are
presented for the Ekman layer with a free boundary and for shear-flow insta-
bility in the presence of density stratification. The principle new results,
obtained by means of numerical integrations of the equations of motion, are:

1) For the Ekman boundary layer caused by wind stress on a free water
surface the critical Reynolds number is much less than for the case of flow
over a smooth rigid boundary. Photographic examples of the instability due
to wind stress obtained from laboratory experiments are also presented. 2)
For the free-surface case the distortion of the basic boundary-layer flow by
the finite-amplitude roll vortices is very great, to the extent that the mod-
ified mean flow may not be recognizable as an Ekman spiral. 3) With unstable
density stratification either shear-flow instability or thermal convection
may dominate according to the relative values of Rayleigh and Reynolds numbers.
4) With stable density stratification the shear-flow instability may be res-
onant with internal gravity-wave oscillations so that damping of the cellular
circulations is minimized. This resonance may result in significant modi-
fication of the wave length and the orientation of the most unstable mode.
Some of the implications of these results for the planetary boundary layers

of the atmosphere and ocean are considered.



1. INTRODUCTION

The Ekman spiral describes the boundary layer in a rotating coordinate
system where the flow is slow compared to the speed of rotation and the
boundary is perpendicular to the rotation axis. It is a simple example of
a class of boundary-layer flows in which the velocity changes direction as
one moves normal to the boundary, and it is readily produced in rotating
laboratory experiments. Figure 1 illustrates the normal component of flow
for the Ekman boundary layer in comparison with that due to a rotating disc
in a stationary fluid. ﬁoth boundary layers have similar instabilities
when the Reynolds numbers for thg laminar flows exceed their respective
critical values. Experimental results for the rotating disc have been given
by Grégory, Stuart and Walkerl and for the Ekman boundary layer by Fallerz,
Faller and Kaylor3 ,» and Tatro and Mollo—ChristiensenA. Independent numeri-
cal studies of the instability of Ekman flow by the present authors5 and by
Lilly6 are in essential agreement with the laboratory results and extend
these results beyond what can be readily measured in the physical experiments.

In addition to direct application to many laminar rotating fluid systems,
it has been suggested that the Iinstabilities described here may be of sig-
nificance in the turbulent planetary boundary layers of the atmosphere and
the oceans7’8’9. There the average profiles of flow are similar to the Ekman
spiral, and, indeed, it was in view of calculating the wind drift in the
surface layers of the ocean that EkmanlO first considered the solution for
viscous boundary-layer flow in a rotating system. The essential basis of the
suggested correspondence of the laminar results with the turbulent planetary

boundary layers is this: When the effects of small-scale turbulence are



parameterized as an eddy viscosity it is found that the turbulent Reynolds
number of the flow in a planetary boundary layer is generally such that it
should be unstable to large-scale cellular motionse. While the limits with-
in which this correspondence hold remains one of conjecture, there is abund-
ant evidence of roll-vortex structure in the planetary boundary layers. In
many cases these vortices may be due to organized thermal convection, but
the possibility of cellular structure due to shear-flow instability deserves
serious consideration and should not be exclﬁded.

In this paper we will briefly review the essential results of previous
work before proceeding to the more recent developments. Numerical and ex-
perimental results which complement this review will be given in other pre-
sentations by Drs. Lilly and Mollo-Christiensen, respectively. Our more
recent work has concerned the following topics: 1) studies of the stability
of Ekman flow due to wind stress on the free boundary of a liquid (the ocean
surface case), 2) finite-amplitude numerical solutions with a free boundary,
3) numerical studies of Ekman shear flow in the presence of unstable density
stratification, and 4) numerical studies of the effects of a stable density
stratification on the instability of Ekman flow.

3

2. REVIEW.

Figure 2 shows two examples of the distribution of a dye tracer in a
rotating 1aboratory experiment, and illustrates some of the characteristics
of the two modes of instability of the laminar Ekman boundary layer. In
this experiment a vortex was generated by withdrawing water from the center
of the tank (at the axis of rotation) and by reintroducing it at the rim.

Away from the ceater of the tank the angular speed of flow was small compared



to the basic rotation rate of the system. The Ekman boundary layer at the
bottom of the fluid (water) was approximately 0.5 cm thick compared to a
total depth of 20 cm, and the radial transport of fluid took place entirely
in this thin Ekman boundary layer. Crystals of potassium permanganate dye
were dropped into the tank near the rim to i1llustrate the laminar flow and
the two modes of instability. In Fig. 2b the laminar flow at the very bot-
tom of the boundary layer is indicated by the streaks of dye spiraling in-
ward at 45 degrees.

The vortex circulation was cyclonic, in the same sense as the tank ro-
tation when viewed from above, and in Fig. 2 the free stream flow (above the
boundary layer) is parallel to the circular lines, from right to left. The
instability designated type 1 is shown by the small bands of dye oriented
about 15 degrees to the left of the basic flow, and the instability designa-
ted type 2 is shown by the widely spaced bands oriented about 15 degrees to
the right of the free stream flow. The circular lines are 20 cm apart in a
tank of total radius 200 cm, hence for the experiment illustrated in Fig. 2a
the type 1 bands had a spacing of L(l) = 2,33 em and the type 2 bands,
L(2) = 6.25 ecm . In terms of the characteristic depth of the boundary layer
D= (v/ﬂ)% , where v 1is the kinematic viscosity and 2 is the basic rota-
tion rate, the corresponding non-dimensional band spacings are L(1) = 11.1D
and L(2) = 29.8D . In Fig. 2b the band spacings and angles are more varia-
ble, but the two modes are clearly distinguishable none the less. The bands
of dye are indicative of roll-vortex circulatiéns with horizontal axes, these
circulations being superimposed upon the basic Ekman boundary-layer flow.
They lead to alternating bands of convergence and divergence near the bottom

of the boundary layer and hence to the dark and light bands, respectively.



It should be noted that the type 1 bands are nearly stat;onary, These are
an example of inflectional instability similar to the stationary vortices
observed and analyzed by Gregory, Stuart and Walkerl for the rotating disc.
On the other hand the long wave length type 2 vortices move rapidly and ap-
pear to be essentially different in character from the type 1 mode. Dr.
Lilly, who's presentation follows, has shown that the type 2 vortices repre-
sent a new kind of instability in which the Coriolis forces play an essential
destabilizing role as opposed to the type 1 vqrtices for which the Coriolis
forces tend to stabilize the flowﬁ. It has now been shown that the type 2
mode of instability occurs also for the flow due to a rotating disc when
there ig sufficient disturbance of the basic flow, and it has been inferred
that the rapidly moving type 2 mode is most important for the transition to
turbulence that is observedB.

Figure 3 gives schematically the results of our experiments on the in~-
cidence and the different regimes of these two modes. The abscissa is a
Rossby number Ro which in this case measures the relative 1mportance4of
curvature of the flow in the cylindrical tankz, and the ordinate is the
Reynolds number Re at which the laminar flow was first observed to be un-
stable. For the Ekman boundary layer the Reynolds number is defined as
Re = VgD/v - f':S%; where Vg is the geostrophic speed of flow (free-stream

(Qv) .
flow) above the boundary layer. The details of Fig. 3 are discussed else-

where2’3

but the major features of note are these: 1) The effects of curva-
ture (as measured by Ro ) apparently have a sfrong influence upon the sta-
bility of the type 2 mode but a relatively small effect upon that of type 1;
2) The two intersecting lines define 4 stability regimes; and 3) For the

ideal Ekman boundary layer (Ro = 0) type 2 has a critical value of Re



significantly less than for type 1. These facts have been confirmed by the
experiments of Tatro and Mollo--Christiensen4 who found the minimum critical
Reynolds number to be Rec(Z) = 56 , somewhat lower than the minimum value
indicated by our data. Their experimental value was very close to the value
Rec = 55 found by Lilly6 and by ués in the tWO‘different numerical studies.
With respect to the effect of Ro wupon the type 2 instability, there
is some question about the significance of the sloping line as a true repre-
sentation of the instability curve for the type 2 mode. Both sets of experi-
mental observationsB’4 are in substantial agreement that such a sloping line
represents the boundary between observable and non-observable vortices. How-
ever, because of the rapid radial motion of the type 2 mode it has been sug-
gested5 that the exponentially growing disturbance may not reach observable
amplitude until it has moved radially inward to a value of Re significantly
greater than the true critical value. In such a case the error in the esti-
mation of Rec would be a function of Ro and could lead to the apparent

dependence of Rec upon Ro that is indicated in Fig. 3.

3. EKMAN INSTABILITY WITH A FREE BOUNDARY

The Ekman spiral produced near the free surface of a rotating liquid by
a constant tangential stress on the surface is the same in all essentials as
that due to geostrophic flow over a rigid boundary. The spiral flow due to
wind stress on a rotating body of water is illustrated in Fig. 11. In terms
of non-dimensional length and velocity scales there is no difference in the
shear of these two spiral poundary layers and all apparent differences of
velocity can be accounted for by the reference velocity of the observer.

However, even though the shear of the basic flow is the same in each case,



cellular or turbulent motions experience a rigid boundary in the one case

and an esgsentially free boundary in the other. The equivalent definition
vD v
of Re for the free surface case is Re = —— = —2 1. where v, is the
(av)*

free surface speed for the undisturbed Ekman spiral.

Figure 4 shows the dependence of growth rate k upon the angle ¢
(as defined below) and the wave number o = %ﬂj’for the Ekman boundary
layer due to a free surface stress at Re = 25 . These results were obtained
by a direct numerical integration of the Navigr-Stokes equations by means of
an initial value technique. Details of the formulation of this problem, the
numerical procedures, and some results are given elsewhere for the rigid-
boundary cases’g, and only a broad outline of the method is repeated here.

The equations to be integrated were, before conversion to finite-differ-

ence form,

u +Re_a.£‘ﬁz_"ll +2_ai = Y2y

ot a(y,z) 9z

(1)
& (9,8 _,3u _ o2
Y + Re 3(y.2) 2 " vee .

Here we have used right-handed Cartesian coordinates with =z 1in the direction
of the rotation vector. The coordinate scales have been made dimensionless
with respect to the Ekman depth D , and the velocity components u , v , w
have been made dimensionless with respect to v, The velocity is taken‘rel—
ative to the rotating coordinate system, and the resultant Coriolis accelera-
tions are the third terms on the left of eqs. (1). The x direction has been
taken at the angle € to the left of the free-surface flow and is the direc-
tion of the axes of the cellular motions. Since the basic flow and the cells
are independent of x , due to the continuity equation the velocity components

in the y - z .plane can be represented by a stream function defined by



w=203¢/3y and Vv = - 3¢/3z . Accordingly, £ is the component of vorticity
in the x direction. The angle € and the wave-length L are treated as
parameters to be varied from one numerical experiment to another to determine
the values of € and L which result in the maximum instability at some
value of Re .
The boundary conditions for the free-surface problem are:
at z=0 : 3Jufdz = 2% cos (n/4 - €) , Iv/oz = 2% sin (n/4 - ¢)
at z=-o : 3ufiz=0 |, ov/iz = 0 ,

These conditions lead to the solution of eqs. (1):

u = e® cos (z - ¢)

(2)

v = e% gin (z -¢) ,

and it is the stability of eqs. (2) that is under comnsideration.

‘The initial conditions for the numerical integrations were eqs. (2)‘plus
a small perturbation introduced into the finite-difference analogue of eqgs.
(1). Growth rates k were determined from the rate of change of amplitude
of the dominant unstable mode after the initial perturbations were no longer
important but before the unstable cellular motions had reached large enough
amplitude to significantly alter the basic flow.

From Fig. 4 it appears that at Re = 25 the most unstable mode occurred
at approximately € = 4 * 2 degrees and a = 0.42 + .05 . This value of «
corresponds to L = 15.0 * 2.0D ., From similar data we have extrapolated to
k = 0 and find the preliminary estimate Rec = 12 + 3 as the minimum criti-
cal Reynold number.

Figure 5 is an example of the form of the cellular motions for the free
surface case. Although this example is for finite-amplitude conditions where

the mean flow has been somewhat changed by the non-linear interactions,



nevertheiess the general cellular structure is indicated. Of particular note
in Fig. 5 is the fact that the most unstable mode does not consist of a series
of alternating cells which damp in intensity with depth. Rather, the cells
extend without significant change of phase to the bottom of the fluid layer,
as is indicated by the vertical O 1lines separating positive and negative
values of stream function. The cells in Figure 5 that are indicated by dashed
lines at approximately 2z = =10 do not contradict the above statement since
they are a result of the non-linear interactions and do not appear for the
small-amplitude, exponentially growing mode of instability.

We have made a preliminary attempt to obtain experimental confirmation
of the numerical‘results discussed above. Figure 6 shows bands of dye which
illustrate wind-driven vortices near the free surface of a rotating tank of
water. Wind stress was generated by rapidly rotating a light-weight aluminum
frame with twelve radial arms close to the water surface (see Fig. 7.). Al-
though surface waves also were generated, these did not seem to interact with
the Ekman boundary layer to a significant extent. Crystals of Acid Fuéhsin,

a red dye, were sprinkled onto the surface to indicate the circulation. At
first they showed the direction of flow at the free surface, then the dye
became organized into bands by the roll vortices, and finally the dye became
mixed and diffused throughout a deep layer and no longer indicated the vortex
motions.

Unfortunately, a contaminating surface film had a strong influence upon
the wind-driven circulation. Figure 8 illustrates how the water in the central
portion of the tank was swept clean of the contaminating film by the radial
motion in the surface layer. In the film-covered region toward the rim of
thetténk the surface flow v, was constrained to be purely tangential. If

the surface flow had had a radial component the film would have compressed



(or dilated) until this component of surface flow vanished. In the equili-
brium state the total stress T, was the sum of the wind stress T and
the pressure effect due to the compressed film Tp . In the film-free re-
gion the wind stress was the only surface force. The Ekman spirals with
surface flow 45 degrees to the right of the total stress are shown in Fig.
8 for both regions.

In Fig. 6 banded structures are shown for both the filmed and the film-
free regions. In the latter case (Figure 6b) a sequence of three photos
at intervals of 6 secs. shows the development of the banded structure from
an initially unbanded pattern of dye. By comparison of the band orientations
with the Ekman spirals in Fig. 8 and with the surface flows indicated by the
dye streaks (Fig. 6b) it appears that in both cases the bands were oriented
about 10-15 degrees to the right of the surface flow. This result disagrees
with our numerical results which indicated that the angle of maximum insta-
bility was approximately 4 degrees to the left of the surface flow. However,
there are several ways in which the experiments do not conform to the.ideal—
ized model used for the numericél intégrations. First, the effect of a
surface film (or even surface tension in the absence of a contaminating f£ilm)
may alter the most unstable mode. Second, the rate of rotation of the tank
was kept low to maintain an essentially flat water surface, and as a.result
the boundary layer may have differed considerably from the ideal Ekman solu-
tion. Third, although the surface gravity waves appeared to have little in-
fluence, some smallldistortion of the boundary;layer flow probably was intro-
duced by interaction with the waves. Finally, the vortices indicated by the

bands of dye were finite-amplitude circulations at values of Re in the

range 50-100. Thus.the experiments have demonstrated an instability of the
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wind-driven surface boundary layer, but a detailed comparison of theory and
experiment will require better correspondence between the experimental and

the numerical studies.

4. FINITE-AMPLITUDE RESULTS FOR INSTABILITY WITH A FREE-SURFACE

Figures 9 and 10 illustrate the results of a numerical computation
carried out until a steady-state finite-amplitude solution was attained.

The computation was performed for Re = 600 and € = 30 degrees. The hori-
zontal wave lengths L = 24, 12, 8, and 6D were permitted in the computa-
tion to allow non-linear interactions of these modes, as opposed to some other
cases where only the longest wave permitted by the grid was allowed to occur.
Angle € = 30 degrees corresponds to vortices oriented 30 degrees to the

left of the surface flow or 15 degrees to the right of the wind stress. The
depth of the flpid was rather shallow and undoubtedly this restricted the
vertical development of the cells. This limitation and the specific values

of ¢ and L that were used must have affected the specific detailed results
but do not seem to have been crucial for the general results that are described
below.

As may be inferred from Fig. 9, the 4 permitted horizontal modes all
achieved significant amplitude and became locked in phase to produce a single
intense cell which extended to the bottom of the fluid. By comparison of the
total stream function with the perturbationustream function it is clear that
the velocities of the cellular motions were comparable with the mean flow.
Figure 9 shows that departures of u from the horizontally averaged flow at-

tained values greater than 50Z of v, Moreover, since the original shear
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flow was essentially confined above the depth 2z = -2 we see that the cellu-
lar motions that arose from the instability penetrated well beneath the orig-
inal boundary layer.

Figure 10 illustrates the modification of the original spiral by the
strong cellular motions through the vertical exchange of momentum. In com-
paring the original Ekman spiral with the mean flow after complete development
of the cells we find that 2 principal modifications of the original flow have
taken place: 1) the free-surface flow has been reduced to 0.61 v, and the
angle with respect to the wind has been reduced from 45 degrees to 8 degrees.
2) The steady-state transport to the right of the wind stress became distrib-
uted throughout nearly the entire depth of the fluid layer.

We have not determined that the specific conditions of the experiment
described above are the optimum in any sense, and it may be that a different
combination of L and € would occur naturally in a physical experiment.
More numerical and experimental studies will be required to clarify this
question. In the meantime it appears that significantly large modificafions
of the basic flow can result from these instabilities, to the extent that it

may not be recognizable as an Ekman spiral.

5. SHEAR~FLOW INSTABILITY WITH UNSTABLE DENSITY STRATIFICATION

One of the most important factors that must be considered in the planet-
ary boundary layers of the atmosphere and ocean is deﬁsity stratification.
With an unstable thermal gradient one might suppose that thermal convection
would dominate over the shear-flow instability, and with stable stratification

one might expect that the shear-flow instability might be rapidly damped.
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To incorporate stratification into our numerical model we have added
the heat energy transfer equation to the equations of motion and continuity
and have introduced the Boussinesque approximation. The following equations

apply to geostrophic flow over a rigid boundary:

E+Rem-l+2§i = -2 sin ¢ + V2u

t 3(y,z) 9z

ag 2(0,6) _ ,2u _EaPD3 a , o

ot + Re 9(y,z) 2 9z ReH oy +_ veE (3
o 3(¢,0) = py2 = y2

5t R 50e) PV2a , £ = V2§

In eqs. (3) Ra is a Rayleigh number, P 1is the Prandtl number, H is the

depth of the fluid, and o' 1is the specific volume. For this study Ra =

- E—AELEE- where u;T is the initial average value of o' , A" =o' - o)
a' kv ° u

is th: difference in o' between the upper and lower boundaries of the fluid,

‘and we have taken initially a linear gradient of a' given by

O -

+ Aa' (Eg- - %) .

The dimensionless value of the departure of the specific volume from the initial
a' - o'
o

Aa’ '

tionally unstable density stratification which, from the above definitionms,

linear gradient is o = We consider first the case of a gravita-
corresponds to negativé Aa' and positive Ra .

In Fig. 11 we have summarized the interaction of convective cells with
the shear flow in an Ekman layer at low values of Re-. The shear flow was
essentially confined to the layer below z = 2 , but the thermal cells could
extend throughout the entire depth of the fluid, in this case to H = 8D .

The neaily-vertical curves in Fig. 11 show the vertical variation of the rela-

tive amplitude of the stream function ¢ in the thermal cells at the constant
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value Ra = 10° and for the three values Re = 0, 50, and 100 . The nearly-
horizontal curves indicate the height of the maximum in stream function,

¢max » as a function of Re for the three wave lengths L = 6, 12 and‘ZAD .
For increasing Re and for each value of L it appears that the height of
¢max increases gradually and approaches a limiting height at about 2z = 5.1
compared to the height 2z = 4,0 at Re = 0 , The dashed curves indicate

the growth rate k for each value of L as a function of Re . These curves
show a decrease of k with increasing Re . The overall interpretation is
that above Re § 50 the convective cells are-in effect cut off by the shear
flow and are confined to the fluid region above the Ekman layer. With the
reduction in the vertical extent of the cells there is an accompanying de-
crease in their growth rate due to the dependence of Ra upon the depth of
conve;tion.

For still larger Re we must consider the poésibility of competition
between the thermal and the shear-flow instabilities. Fig. 12 shows patterns
of stream function at two different times during a computation for Re‘= 300,
Ra = 10° and € = 14 degrees. For this experiment the initial conditions
were thermal cells that extended through the entire depth of the fluid. At
Re = 300 these were rapidly truncated at the bottom by the shear flow. In
Fig, 12a the beginning of a shear-flow instability is indicated by the low
level cells, but the thermal cells at higher levels still dominated the cir-
culation. However, for these values of Re and Ra the rate of growth of
the shear-flow instability was greater than for the truncated thermal con-
vection, and Fig. 12b shows the conditions at a later time when the shear flow
instability began to dominate. For these conditions the growth rates of the

thermal and the shear-flow cells determined independently were, respectively

kt = 4.8 and ks =11.1 .
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An interesting feature of this computation was the ;arge oscillation of
the energy of the flow as the transition from thermal to shear-flow cells
progressed. At this angle (e = 14 degrees) the shear-flow cells were nearly
stationary, but the thermal cells at the same angle were imbedded in an upper
level flow which had a significant cémponent normal to the axes of the cells,
to the left in Figure 12. As a result, when the two cellular structures were
of approximately equal magnitude there.were large fluctuations of the pattern
and of the perturbation energy as the upper and lower cells came into and out
of phase. When in phase the cells merged and>extended throughout the entire
layer. These results are of a preliminary nature and a more comprehensive
survey of parameters including studies for finite-amplitude circulations is
needed. Nevertheless, many lnteresting aspects of the interaction of shear-

flow instabilities and thermal convective instabilities have already appeared.

6. EKMAN INSTABILITY WITH A STABLE DENSITY STRATIFICATION

It is not obvious that a stable density stratification in a planetary
boundary layer will always damp the large-scale shear-flow instability with
which we are concerned, for two reasons. First, while on the one hand we
expect that for a given Re stable stratification will ﬁend to damp cellular
motions, on the other hand the small-scale turbulence is also damped. Accord-
ingly, one should expect an increase in the turbulent Reynolds number,

Ret = Vg/(ﬂvt)li , where v_ 1is the turbulent or eddy viscosity that is used

t
to parameterize the small-scale turbulence. Because of the latter effect we
might expect an increase in the tendency for large-scale instability of the
boundary layer. Second, there is the possibility that the moving cells will

travel with the speed of internal gravity waves and thus provide a resonance
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between the gravity mode and the shear-flow instability. We have begun a
study of this latter possibility using numerical solutions of Eqs. (3) with
negative values of Ra, stable stratification.

An upper bound for the frequency of internal gravity waves in an
otherwise stationary fluid is given by the Brunt-Vaisala frequencyll. In
effect, this is the natural frequency of oscillation of a parcel of fluid
displaced vertically from its equilibrium position in a stable stratification
and allowed to oscillate without exchange of mass, heat, or momentum with
its environmental fluid. In terms of the parameters already defined the
Brunt-Vaisala frequency is given by wk = ’(RaDl‘/PHl*);i where w* has been made
dimensionless with respect to Q. The corresponding upper bound on the speed
of an internal wave of given wave length L/D is ¢ = * w*L/ZwDRe.

Since the main body of the fluid layer under comsideration moves
in the y direction with a speed sin e, the interval of speeds in which in-
ternal gravity waves can exist is given by cg = sin ¢ + w*L/2rDRe. Con-
sequently, resonance between the shear flow instability and one or more of the
many internal wave modes can occur only when the speed of the unstable mode
lies within the rangé of speeds cited above. Of course, the speed of an unstable
mode depends upon L/D and € as well as the parameters Re, Ra, and H/D. In addition
the possible internal gravity modes will be complicated by the boundary conditions
and the shear of the basic flow, and several different internal modes may be excited
simultaneously.

We have not yet attempted to analyze these complications in detail, but we
present an example of what appears to be resonance. Figure 13 illustrates the growth

rate as a function of ¢ for the conditions Re = 600, L/D = 24, H/D =12, and for
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the two values Ra = 0 and Ra =-2.4 x 107. Plotted beneath the curves of growth
rate are the phase speeds. The curve of k vs. ¢ for Ra = 0 shows a single maximum
at approximately e = 20, while for Ra =-2.4 x 107 a second maximum occurs at about
e = =20. At the latter angle the phase speed was about c = + 0.55. From the value
of Ra, P, and H/D that were used, the Brunt-Vailsala frequency was w* = 33 so
that for € = -20 and L/D = 24 the range of speeds for resonance was +.552>cg>+.l32.
However, for € = 0 the range of speeds for resonance was +.210>Cg>~.210 compared to
the observed speed of the decaying mode c;t+0028. These results indicate that re~-
sonance with internal gravity waves provides a mechanism for vortices at other
angles than that which is most unstable at Ra = 0. In fact, there is the distinct pos~
sibility of the joint occurrence of two or more unstable modes at different
angles in patterns similar to those of Fig. 2 but for a different reason.

The above study does not constitute definitive work on the mode that is
most likely to appear even for the idealized model and the specified conditions
that we have considered. With specific values of Ra, Re, P, and H/D it is still
necessary to cover a wide range of values of L./D and e to determine that combin-
'ation which gives the greatest growth rate. -Further beyond lies the realm of
finite-amplitude stuaieS;and“extension of the number of independent parameters
in order to more closely approximate the complicated conditions thaf prevail in

the atmosphere and the oceans.

7. CONCLUSIONS
We have presented several new results concerning the instability of lam-
inar Ekman boundary layers and have intimated the relevance of these results to
the planetary boundary layers of the atmosphere and the oceans. The principal

new results are summarized here:
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1) We have shown examples/iaboratory experiments which illustrate
the instability due to wind stress on the surface of a rotating liquid. The
corresponding numerical studies indicate that the minimum critical Reynolds
number for this instability is much lower, approximately ReC = 12, than
for the case of geostrophic flowvover a rigid boundary, Rec'= 55,

2) finite—amplitude numerical studies for the free surface case indi-
cate that the unstable cellular motions grow to much greater amplitude than
for the rigid boundary case, penetrate to much greater depths into the fluid,
and alter the average boundary-layer flow to the extent that its original
Ekman spiral structure may disappear. These resultsﬁhgve serious implications
for the study of the planetary boundary layer in the oceans if, indeed, we can
assume that the cellular circulations found there are caused by this mechanism.
While there is abundant evidence of cellular circulations in the ocean
12’13’;4’l§?16 there is considerable disagreement upon the nature and origin
of the observed cells that has given rise to other suggested mechanismslz.

3) The numerical studies for unstable thermal stratification indicate
interesting interactions of the shear flow with thermal convection. First, the
shear flow in the Ekman layer may simply cut off the convective cells so that
they are confined to the region above the layer of shear flow. Second, either
the shear-flow instability or thermal convection may dominate depending upon the
relative magnitudes of Re, Ra, and other parameters. Third, since the cells due
to shear flow and those dué to thermal convection move at different speeds there
are interesting interactions which resuit in complicated transient patterns of

flow. All of the above results depend, of course, upon the relative magnitudes

of Rayleigh and Reynolds numbers. In the real geophysical situation it méy be
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expected that other complications, e.g. the diurnal transients or the require-
ment of heat transport, may lead to exceedingly complex interactions.

4) The influence of stable stratification upon the Ekman instability
may not be a simple damping effect. 1In particular, our numerical results have
demonstrated the possibility of resonance with internal gravity oscillatidns,
this resonanée being a function of the angle of the unstable vortices with
respect to the geostrophic wind. These results suggest that roll vortices in
the planetary boundary layer of the atmosphere may occur under conditions of
stable density stratificatiom -and may occur at large angles with respect to the

geostrophic wind.
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CAPTIONS

Fig. 1. Boundary-layer components of flow normal to the direction at angle

Fig.

€ with the tangential direction. The principal inflection point in
each profile is indicated by the curves I . The Ekman and rotating-

disc boundary layers have similar instabilities.

2. Examples of the simultaneous occurrence of the type 1 and type 2
modes of instability of the laminar Ekman boundary layer. a) The type
1 mode appears principally in the upper left and the type 2 mode in the
center of the photograph The interference pattern of the two modes is
clearly seen in the upper left. b) The laminar region where streaks of

potassium permanganate dye at the bottom of the Ekman layer spiral in-

\ ward at 45 degrees appears in the upper right of the photograph. The

pattern in the center is dominated by the type 2 mode of instability

S

but the small bands of the type 1 mode are clearly visible. In both a)

Fig.

and b) transition to turbulence follows rapidly after the appearance of

the type 2 instability, i.e. at smaller radius. These experiments were

performed in a large rotating tank formerly in use at the Woods Hole

Oceanographic Institution.

3. The transition diagram for the type 1 and type 2 modes of instability.
The dashed line and the solid line represent the observed values of Re
vs Ro for instability of the type 1 and the type 2 modes, respectively.
Since Ro measures the effect of ecurvature of the flow in the cylindrical
tank, the extrapolated values at Ro = 0 are the estimated critical

Reynolds numbers for linear Ekman flow.
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4. A growth rate diagram for Ekman instability with a free boundary.
The amplification rate k is given as a function of wave number a

and angle e(degrees) for Re = 25 .

5. Patterns of flow for Ekman instability with a free surface as de-
termingd by a numerical integration of the equations of motion. Condi-
tions: Re = 500 , ¢ = 20 degrees , L = 12D , H = 36D . The perturba-
tion stream function is the departure from the horizontal average of
the total stream function. The perturbation u is the departure from

the horizontal average of u .

6. The instability of wind-driven Ekman flow as indicated by bands of

Acid Fuchsin dye near the free surface of the water. 'a) Bands of dye

in the film-covered region. b) A sequence at intervals of 6 secs to

show the development of the dye bands in the film-free region of the

4

bexperiment. The different orientations of the bands, i.e. nearly tan-

gential in (a) and nearly radial in (b), are due to the effect of the

surface f£ilm onvthe orientation of the Ekman spiral (see Fig. 8). The

boundary of the film-free region may be seen near the top of each photo-

graph in (b).

7. The rotating tank at the University of Maryland. Wind stress was
provided by the rotating aluminum frame suspended approximately 3 cm

above the water surface.

8. The effect of a compressed surface film on the orientation of the

wind-driven Ekman spiral. In the film-covered region the surface flow

v, was constrained to be purely tangential.
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Fig. 9. Patterns of flow due to Ekman instability with a free surface.
Conditions of the numerical experiment: Re = 600 , ¢ = 30 degrees ,
L = 24D 5 H = 9D . The small difference between the total stream func-
tion and the perturbation stream function indicates dominance of the

cellular motions over the mean flow. (Also see Fig. 10).

Fig. 10. Modification of the original Ekman spiral by the finite-amplitude
cellular circulations shown in Fig. 9. W indicates the direction of
the wind stress, and the dashed curve indicates the modified mean flow
after interaction of the cells with the original Ekman spiral (solid

curve). Numbers beside each curve indicate the non-dimensional depth.

Fig. 11. Modifications of thermal convection by the Ekman spirél shear flow
.at small Re for the three wave lengths L = 6D , 12D , and 24D . The
left-hand vertical scale is the grid height m where =z = 0.2 m , and
the right-hand vertical scale is the growth rate of amplitude of the
thermal cells (dashed lines). The solid "horizontal' curve indicates
the height of the center of the convective cells as a function of Reynolds

number.

Fig. 12. The competition between thermal-convective and shear-flow instabili-
ties. a) At this time and earlier in the numerical integration the upper
level thermal cells dominated the pattern of stream function. ©b) At this
later time the faster growing cells due to shear-flow instability began
to dominate the pattern. Conditions of the numerical experiment: Re = 300
Ra = 105 , ¢ = 14 degrees , L = 24D , H = 8D . Note that although the
field of the numerical grid allowed development of the longer wave length

L = 24D , the most unstable wave length was L = 12D .
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Fig. 13. The growth rate k and phase speed c. for Ekman instability with
a stable density stratification. The secondary maximum at € = -20 degrees
for Ra = -2 x 107 corresponds to resonance with the internal gravity

wave traveling at the same value of c. .
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